Ultrafast Water Dynamics at the Interface of the Polymerase–DNA Binding Complex
نویسندگان
چکیده
DNA polymerases slide on DNA during replication, and the interface must be mobile for various conformational changes. The role of lubricant interfacial water is not understood. In this report, we systematically characterize the water dynamics at the interface and in the active site of a tight binding polymerase (pol β) in its binary complex and ternary state using tryptophan as a local optical probe. Using femtosecond spectroscopy, we observed that upon DNA recognition the surface hydration water is significantly confined and becomes bound water at the interface, but the dynamics are still ultrafast and occur on the picosecond time scale. These interfacial water molecules are not trapped but are mobile in the heterogeneous binding nanospace. Combining our findings with our previous observation of ultrafast water motions at the interface of a loose binding polymerase (Dpo4), we conclude that the binding interface is dynamic and the water molecules in various binding clefts, channels, and caves are mobile and even fluid with different levels of mobility for loose or tight binding polymerases. Such a dynamic interface should be general to all DNA polymerase complexes to ensure the biological function of DNA synthesis.
منابع مشابه
Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملNovel Pt(II) Complex and Its Pd(II) Aanalogue. Synthesis, Characterization, Cytotoxicity and DNA-interaction
The ability of small molecules to perturb the natural structure and dynamics of nucleic acids is intriguing and has potential applications in cancer therapeutics. This work reports the synthesis, characterization, cytotoxicity and DNA-binding studies of two cytotoxic and intercalative [M(bpy)(pyrr-dtc)]NO3 complexes (where M = Pt(II) and Pd(II), bpy = 2,2´-bipyridine and pyrr-dtc = p...
متن کاملA spectroscopic study on Calf thymus DNA binding properties of nickel (II) complex with imidazole derivatives of 1,10-phenanthroline ligand
In this study, a nickel (II) complex with 1,10-phenanthroline based ligand, [Ni(FIP)2](OAC)2 (1) with FIP = 2-(Furan-2-yl)-1H-Imidazole[4,5-f][1,10] phenanthroline as ligand was synthesized and characterized by spectroscopic methods and elemental analysis. The interaction of [Ni(FIP)2](OAC)2 (1) with calf-thymus DNA (ct-DNA) was studied by UV-vis absorption, fluorescence spectroscopies and visc...
متن کاملDNA groove binding of an asymmetric cationic porphyrin and its Cu(II) complex: Resolved by spectroscopic, viscometric and molecular docking studies
In the present study, the interaction between water-soluble cationic asymmetric porphyrin, 5-(1-Hexadecyl pyridinium-4-yl)-10, 15, 20-tris (1-Butyl pyridinium-4-yl) Porphyrin Chloride, and its copper (II) derivative with calf thymus DNA (CT-DNA) were studied by means of spectroscopic techniques, viscosity measurements and molecular docking. The monitoring of the changes in visible absorbance sp...
متن کاملFemtosecond Hydrogen Bond Dynamics of Bulk‐like and Bound Water at Positively and Negatively Charged Lipid Interfaces Revealed by 2D HD‐VSFG Spectroscopy
Interfacial water in the vicinity of lipids plays an important role in many biological processes, such as drug delivery, ion transportation, and lipid fusion. Hence, molecular-level elucidation of the properties of water at lipid interfaces is of the utmost importance. We report the two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) study of the OH stretch of ...
متن کامل